

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2014

GCE CHEMISTRY - CH5

SUMMER 2014 MARK SCHEME

SECTION A

Q.1 (a) (i)
$$NH_4^+(aq) + OH^-(aq) \longrightarrow NH_3(aq) + H_2O(1)$$

Acid 1 Base 2 Base 1 Acid 2 [2]
(1 mark for each pair)

(b) (i)

	$[NH_4^+(aq)]/mol dm^{-3}$	$[NO_2^-(aq)]/mol dm^{-3}$	Initial rate/mol dm ⁻³ s ⁻¹
1	0.200	0.010	4.00×10^{-7}
2	0.100	0.010	2.00×10^{-7}
3	0.200	0.030	1.20×10^{-6}
4	0.100	0.020	4.00×10^{-7}

(1 mark for each correct answer)

[3]

(ii)
$$k = 4.00 \times 10^{-7} = 2.0 \times 10^{-4}$$
 (1) 0.200×0.010

Units =
$$\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$$
 (1)

(iv) Increases

If temperature is increased rate increases (1)

and since concentrations do not change the rate constant must increase (or similar) (1) [2]

Total [10]

Q.2 (a)
$$K_w = [H^+][OH^-]$$
 (1) Units = $mol^2 dm^{-6}$ (1) [2]

(b) (i) In pure water
$$[H^+] = [OH^-]$$
 or $[H^+] = \sqrt{1.0 \times 10^{-14}}$ (1)
$$pH = -\log 10^{-7} = 7$$
 (1) [2]

(ii) Final volume of solution is 1000 cm³ so acid has been diluted by a factor of 100 so final concentration of acid is 0.001

or moles acid =
$$\frac{0.1 \times 10}{1000}$$
 = 0.001 (1)
pH = $-\log 0.001$ = 3 (1) [2]

(c)
$$1.78 \times 10^{-5} = \underbrace{[\text{H}^+] \times 0.02}_{0.01}$$
 (1)

$$[H^+] = 8.90 \times 10^{-6} \tag{1}$$

$$pH = 5.05$$
 allow 5 or 5.1 (1)

When an acid is added, the CH₃COO⁻ ions react with the H⁺ ions, removing them from solution and keeping the pH constant (1) [3]

Total [12]

© WJEC CBAC Ltd.

Total [18]

SECTION B

ΩA	(a)	(i)	Oxidising agent	[1]
Ų.4	(a)	(1)	Oxidising agent	

(ii)
$$A = lead(II) chloride / PbCl_2$$
 (1) $B = chlorine / Cl_2$ (1) [2]

(iii)
$$[Pb(OH)_6]^{4-} / [Pb(OH)_4]^{2-} / Na_4[Pb(OH)_6] etc.$$
 [1]

(v)
$$PbO + 2HNO_3 \longrightarrow Pb(NO_3)_2 + H_2O$$
 [1]

Layers held together by weak intermolecular forces (1)

BN is isoelectronic with C so it forms similar structures (1)

Graphite conducts electricity since electrons are delocalised but in BN, each N has a full unbonded p-orbital and each B has an empty unbonded p-orbital so it does not conduct electricity (1) [4]

(Accept electrons are not delocalised in BN so it does not conduct electricity)

QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate [1]

- (ii) Wear-resistant coatings/catalyst support/for mounting high power electronic components / drills in industry / cutting instruments [1]
- (c) (i) $\Delta G = \Delta H T \Delta S$ ($\Delta G = 0$ for reaction to be spontaneous) (1)

$$T = \frac{1.92}{0.0067} \tag{1}$$

$$T = 286.6 \text{ K}$$
 (1)

(ii) Changes in temperature (above or below 286.6 K) caused the tin to change form making it unstable (and causing it to disintegrate)

© WJEC CBAC Ltd.

(d) (i) (At the anode) $H_2 \longrightarrow 2H^+ + 2e^-$ (1)

(At the cathode) $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$ (1)

(Overall reaction) $2H_2 + O_2 \longrightarrow 2H_2O$ (1)

[3]

(ii) Hydrogen is difficult to store / takes up large volume / too flammable / explosive / produced from fossil fuels which leads to a net energy loss / Pt electrodes very expensive [1]

Total [20]

Q.5 Cold $Cl_2 + 2NaOH$ NaCl + NaClO + H_2O (a) (i) (1) Warm $3Cl_2 + 6NaOH \longrightarrow 5NaCl + NaClO_3 + 3H_2O$ (1) [2] (ii) Disproportionation [1] (b) P can (extend the normal octet of electrons) by using 3d orbitals / P can promote 3s electron to 3d orbital N cannot do this since it is in the second period / 3d orbitals not available (1) [2] (c) The terms involved are: lattice breaking enthalpy which is endothermic (1) and hydration enthalpy which is exothermic (1) ΔH solution = ΔH lattice breaking + ΔH hydration (or similar) (1) If ΔH solution is negative then the ionic solid will be soluble (1) [4] QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1] (d) (i) Iodide (1) Only one with less positive standard potential than Fe³⁺, Fe²⁺ half-cell (1) [2] (2nd mark can be obtained from calculation value and statement) $Pt(s) | Fe^{2+}(aq), Fe^{3+}(aq) | Ce^{4+}(aq), Ce^{3+}(aq) | Pt(s)$ (ii) (1) EMF = 1.45 - 0.77 = 0.68 V(1) [2] (e) $K_c = [CH_3COOCH_3][H_2O]$ (1) (i) [CH₃COOH][CH₃OH] No units (1) [2] (ii) $moles = \underline{1.25 \times 32.0} = 0.04(0)$ [1] [CH₃COOH] = 0.04, therefore 0.06 used in reaction and (iii) $[CH_3COOCH_3] = 0.06$, $[H_2O] = 0.06$ and $[CH_3OH] = 0.083 - 0.06 = 0.023$ (1) $K_c = 0.06 \times 0.06 = 3.91$ (1) [2] 0.04×0.023 Value of K_c decreases since the equilibrium shifts to the left / (iv)

Total [20]

[1]

the forward reaction is exothermic